Министерство науки и высшего образования РФ

ФГБОУ ВО Уральский государственный лесотехнический университет

Химико-технологический институт

Кафедра физико-химической технологии защиты биосферы

Рабочая программа дисциплины

включая фонд оценочных средств и методические указания для самостоятельной работы обучающихся

Б1.Б.14 – ХИМИЯ

Направление подготовки - 23.03.02 «Наземные транспортно-технологические комплексы»

Направленность (профиль) - «Автомобиле- и тракторостроение»

Квалификация - бакалавр

Количество зачётных единиц (часов) – 3 (108)

Разработчик: канд. техн. наук, доцент _____/ О.М. Подковыркина /

Рабочая программа утверждена на заседании кафедры физико-химической технологии защиты биосферы (протокол № 🕂 от « 🖰 ೭ » — Ф выем 2021 года).

Зав. кафедрой / О.А. Горбатенко /

Рабочая программа рекомендована к использованию в учебном процессе методической комиссией Инженерно-технического института

комиссией Инженерно-технического института (протокол № 6 от «04» 02 202

Председатель методической комиссии ИТИ А.А. Чижов/

Рабочая программа утверждена директором инженерно-технического института

Директор ИТИ *Шем* /Е.Е.Шишкина/

«<u>О4</u>» марта 20<u>21</u> года

Оглавление

1. Оощие положения	4
2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с	
планируемыми результатами освоения образовательной программы	4
3. Место дисциплины в структуре образовательной программы	5
4. Объем дисциплины в зачетных единицах с указанием количества академических	
часов, выделенных на контактную работу обучающихся с преподавателем (по	
видам учебных занятий) и на самостоятельную работу обучающихся	
	6
5. Содержание дисциплины, структурированное по темам (разделам) с указанием	
отведенного на них количества академических часов	7
5.1. Трудоемкость разделов дисциплины	7
5.2. Содержание занятий лекционного типа	8
5.3. Темы и формы занятий семинарского типа	9
5.4. Детализация самостоятельной работы	10
6. Перечень учебно-методического обеспечения по дисциплине	12
7. Фонд оценочных средств для проведения промежуточной аттестации	
обучающихся по дисциплине	13
7.1. Перечень компетенций с указанием этапов их формирования в процессе	
освоения образовательной программы	13
7.2. Описание показателей и критериев оценивания компетенций на различных	
этапах их формирования, описание шкал оценивания	13
7.3. Типовые контрольные задания или иные материалы, необходимые для	
оценки знаний, умений, навыков и (или) опыта деятельности,	
характеризующих этапы формирования компетенций в процессе освоения	
образовательной программы	14
7.4. Соответствие балльной шкалы оценок и уровней сформированных	
компетенций	16
8. Методические указания для самостоятельной работы обучающихся	16
9. Перечень информационных технологий, используемых при осуществлении	
образовательного процесса по дисциплине	17
10. Описание материально-технической базы, необходимой для осуществления	
образовательного процесса по дисциплине	18

1. Общие положения

Дисциплина «Химия» относится к базовой части блока 1 учебного плана, входящего в состав образовательной программы высшего образования 23.03.02 «Наземные транспортнотехнологические комплексы» (профиль – Автомобиле- и тракторостроение).

Нормативно-методической базой для разработки рабочей программы учебной дисциплины «Химия» являются:

- Федеральный закон «Об образовании в Российской Федерации», утвержденный приказом Минобрнауки РФ № 273-ФЗ от 29.12.2012;
- Приказ Минобрнауки России № 301 от 05.04.2017 г. Об утверждении порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры;
- Федеральный государственный образовательный стандарт высшего образования (ФГОС ВО) по направлению подготовки 23.03.02 «Наземные транспортно-технологические комплексы» (уровень бакалавриат), утвержденный приказом Министерства образования и науки РФ № 162 от 06.03.2015:
- Учебные планы образовательной программы высшего образования направления 23.03.02 «Наземные транспортно-технологические комплексы» (профиль Автомобиле- и тракторостроение), подготовки бакалавров по очной форме обучения, одобренный Ученым советом УГЛТУ (протокол № 6 от 20.06.2019) и утвержденный ректором УГЛТУ (20.06.2019).

Обучение по образовательной программе 23.03.02 «Наземные транспортнотехнологические комплексы» (профиль – Автомобиле- и тракторостроение) осуществляется на русском языке.

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемыми результатами обучения по дисциплине являются знания, умения, владения и/или опыт деятельности, характеризующие этапы/уровни формирования компетенций и обеспечивающие достижение планируемых результатов освоения образовательной программы в целом.

Цель освоения дисциплины — формирование способности формулировать цели и задачи исследования, выявлять приоритеты решения задач, применять систему химических естественнонаучных фундаментальных знаний для идентификации и решения профессиональных залач.

Задачи дисциплины:

- привить обучающимся способности к применению естественнонаучных и общеинженерных знаний, фундаментальных законов природы характеризующих химические и физические свойства окружающих нас объектов и явлений;
- обучить методам решения задач с использованием естественнонаучных знаний о закономерностях химических превращений и основных химических законов для правильного формулирования цели и задачи исследования, выявления приоритетов решения задач, выбора и создания критериев для профессиональных задач.

Процесс изучения дисциплины направлен на формирование следующей общепрофессиональных компетенций:

- ОПК-1: способностью формулировать цели и задачи исследования, выявлять приоритеты решения задач, выбирать и создавать критерии оценки;
- **ОПК-4**: способностью использовать законы и методы математики, естественных, гуманитарных и экономических наук при решении профессиональных задач.

В результате изучения дисциплины обучающийся должен:

знать:

- методы выявления приоритетов в решении задач, выбора и создания критериев оценки

знаний о фундаментальных законах природы, сути основных законов химии и химических превращений;

- свойства и основные способы получения неорганических веществ;
- закономерности изменения физических и химических свойств простых и сложных веществ в соответствии с Периодическим законом Д.И. Менделеева.

уметь:

- применять естественнонаучные фундаментальные законы природы, суть основных законов химии и химических превращений, методы математического анализа полученных результатов химического эксперимента при решении профессиональных задач;
 - определять термодинамическую возможность протекания химических процессов
- записывать уравнения реакций химических превращений веществ и их получения; проводить аналогии в изменении свойств химических соединений.

владеть:

- практическим применением законов химии, методикой проведения химического эксперимента для решения стандартных задач в профессиональной деятельности;
- выявлением взаимосвязи между структурой, свойствами и реакционной способностью химических соединений при решении профессиональных задач.

3. Место дисциплины в структуре образовательной программы

Данная учебная дисциплина относится к дисциплинам базовой части, формируемой участниками образовательных отношений, что означает формирование в процессе обучения у бакалавра общепрофессиональных знаний и компетенций в рамках выбранного профиля и профессионального стандарта.

Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин ОПОП и написания выпускной квалификационной работы.

Перечень обеспеч	ивающих, сопуп	<i>иствующих и о</i> с	беспечиваемых д	исциплин

	Обеспечивающие	Сопутствующие	Обеспечиваемые
1.	Химия (школьный курс)	Физика	Экология
2.			Материаловедение. Технология
			конструкционных материалов
3.			Безопасность
			жизнедеятельности
4.			Охрана труда
5.			Техногенные системы и экологический риск
6.			Управление машиностроительным
			предприятием
7.			Эксплуатация и ремонт автомобилей и
			тракторов
8.			Защита выпускной квалификационной
			работы, включая подготовку к процедуре
			защиты и процедуру защиты

Указанные связи дисциплины дают обучающемуся системное представление о комплексе изучаемых дисциплин в соответствии с ФГОС ВО, что обеспечивает требуемый теоретический уровень и практическую направленность в системе обучения и будущей деятельности выпускника.

4. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины

Dun vinobnoŭ poboziv	Всего академі	ических часов
Вид учебной работы	очная форма	заочная форма
Контактная работа с преподавателем:	34	6
лекции (Л)	10	2
практические занятия (ПЗ)	24	4
лабораторные работы (ЛР)	-	-
Самостоятельная работа обучающихся:	74	102
изучение теоретического курса	25	40
подготовка к текущему контролю	45	58
подготовка к промежуточной аттестации	4	4
Вид промежуточной аттестации:	Зачет	Зачет
Общая трудоемкость	3/108	3/108

^{*}Контактная работа обучающихся с преподавателем, в том числе с применением дистанционных образовательных технологий, включает занятия лекционного типа, и (или) занятия семинарского типа, лабораторные занятия, и (или) групповые консультации, и (или) индивидуальную работу обучающегося с преподавателем, а также аттестационные испытания промежуточной аттестации. Контактная работа может включать иные виды учебной деятельности, предусматривающие групповую и индивидуальную работу обучающихся с преподавателем. Часы контактной работы определяются Положением об организации и проведении контактной работы при реализации образовательных программ высшего образования, утвержденным Ученым советом УГЛТУ от 25 февраля 2020 года.

5. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов

5.1. Трудоемкость разделов дисциплины

очная форма обучения

№ п/п	Наименование раздела дисциплины	Л	П3	ЛР	Всего контактной работы	Самостоятельная работа
1	Раздел 1. Основные стехиометрические законы.	1	2	1	3	8
2	Раздел 2. Классы неорганических веществ.	1	2	-	3	8
3	Раздел 3. Строение атома и периодическая система элементов.	1	2	-	3	9
4	Раздел 4. Химическая кинетика. Химическое равновесие.	1	4	-	5	8
5	Раздел 5. Способы выражения состава растворов.	1	2	-	3	8
6	Раздел 6. Тема 1. Растворы электролитов. Смещение равновесия в растворах электролитов.	2	4	-	6	10

№ п/п	Наименование раздела дисциплины	Л	ПЗ	ЛР	Всего контактной работы	Самостоятельная работа
	Тема 2. Гидролиз.					
7	Раздел 7. Окислительновосстановительные реакции.	1	4	-	5	9
8	Раздел 8. Электрохимические процессы. Тема 1. Гальванические элементы. Тема 2. Электролиз расплавов и растворов. Тема 3. Коррозия металлов и сплавов.	2	4	-	6	10
Ито	го по разделам:	10	24	-	34	70
Промежуточная аттестация		X	X	X	X	4
Bcei	Γ0			108		

заочная форма обучения

№ π/π	Наименование раздела дисциплины	Л	ПЗ	ЛР	Всего контактной работы	Самостоятельная работа
1	Раздел 1. Основные стехиометрические законы.	0,25	ı	ı	0,25	-
2	Раздел 2. Классы неорганических веществ.	0,25	1	-	1,25	24
3	Раздел 3. Строение атома и периодическая система элементов.	0,25	1	-	0,25	-
4	Раздел 4. Химическая кинетика. Химическое равновесие.	0,25	-	-	0,25	-
5	Раздел 5. Способы выражения состава растворов.	0,25	-	-	0,25	-
6	Раздел 6. Тема 1. Растворы электролитов. Смещение равновесия в растворах электролитов. Тема 2. Гидролиз.	0,25	1	-	1,25	25
7	Раздел 7. Окислительновосстановительные реакции.	0,25	1	-	1,25	25
8	Раздел 8. Электрохимические процессы. Тема 1. Гальванические элементы.	0,25	1	-	1,25	24

№ п/п	Наименование раздела дисциплины	Л	ПЗ	ЛР	Всего контактной работы	Самостоятельная работа	
	Тема 2. Электролиз расплавов и растворов. Тема 3. Коррозия металлов и сплавов.						
Ито	го по разделам:	2	4	-	6 98		
Про	межуточная аттестация	X	X	X	x 4		
Bcei	Γ 0	•	•	•	108		

5.2. Содержание занятий лекционного типа

Раздел 1. Основные стехиометрические законы

Эквиваленты простых и сложных веществ, закон эквивалентов, эквивалентный объем газов.

Раздел 2. Классы неорганических веществ

Химические свойства, получение, номенклатура оксидов, гидроксидов, кислот, солей.

Раздел 3. Строение атома и периодическая система элементов

Модели атома, состав и размеры ядра, электронные оболочки, квантовые числа, их физический смысл. Периодический закон Д.И.Менделеева, свойства атомов и закономерности в их изменении (радиус, потенциал ионизации, электроотрицательность).

Раздел 4. Химическая кинетика. Химическое равновесие

Зависимость скорости химической реакции от различных факторов. Закон действующих масс, правило Ван-Гоффа, уравнение Аррениуса. Смещение равновесия, принцип Ле-Шателье. Каталитические процессы.

Раздел 5. Способы выражения состава растворов

Массовая доля и моляльность. Массовая, молярная и нормальная (эквивалентная) концентрации. Нормальная и молярная концентрация.

Раздел 6.

Тема 1. Растворы электролитов. Смещение равновесия в растворах электролитов.

Сильные электролиты, понятие об ионной силе растворов, активная концентрация. Слабые электролиты, гомогенные равновесия в растворах, константа равновесия, диссоциация комплексных ионов. Гетерогенные равновесия в растворах, произведение растворимости. Реакции ионного обмена, участие комплексных соединений в обменных реакциях. Водородный показатель.

Тема 2. Гидролиз.

Гидролиз неорганических солей. Константа гидролиза, степень гидролиза, влияние концентрации соли, температуры, примесей на степень гидролиза. Гидролиз кислых и основных солей. Совместный гидролиз.

Раздел 7. Окислительно-восстановительные реакции

Важнейшие окислители и восстановители. Окислительно-восстановительные реакции с заданной средой. Направление и электродвижущая сила в окислительно-восстановительных реакциях. Вывод среды в окислительно-восстановительных реакциях.

Раздел 8. Электрохимические процессы

Тема 1. Гальванические элементы.

Разноэлектродный гальванический элемент, концентрационный гальванический элемент.

Тема 2. Электролиз расплавов и растворов.

Электрохимические процессы, протекающие в растворах под действием тока от внешнего источника.

Тема 3 Коррозия металлов и сплавов.

Виды и типы коррозии. Зависимость ЭДС источников тока от химической природы металлов и состава растворов. Коррозия металлов и сплавов в различных средах. Методы защиты от коррозии.

5.3. Темы и формы занятий семинарского типа

Учебным планом по дисциплине предусмотрены практические занятия

	у чеоным планом по дисциплине предусмотрены	1		
3.0		Форма	* *	икость, час
$N_{\underline{0}}$	Наименование раздела дисциплины (модуля)	проведения	очная	заочная
		занятия	форма	форма
	Раздел 1. ОСНОВНЫЕ СТЕХИОМЕТРИЧЕСКИЕ	Практическое		
1	ЗАКОНЫ:	занятие:	2	_
1	- эквиваленты простых и сложных веществ, закон	Стехиометричес	_	
	эквивалентов, эквивалентный объем газов.	кие расчеты		
	Раздел 2. КЛАССЫ НЕОРГАНИЧЕСКИХ	Практическое		
	ВЕЩЕСТВ	занятие: Классы		
2	- химические свойства.	неорганических	2	1
_	- получение.	веществ:	_	1
	- номенклатура оксидов, гидроксидов, кислот,	получение,		
	солей.	свойства		
	Раздел 3. СТРОЕНИЕ АТОМА И	Практическое		
	ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ:	занятие:		
	- модели атома, состав и размеры ядра,	Строение атома		
3	электронные оболочки, квантовые числа, их	и периодическая	2	_
	физический смысл;	система	_	
	- периодический закон Д.И.Менделеева, свойства	химических		
	атомов и закономерности в их изменении (радиус,	элементов		
	потенциал ионизации, электроотрицательность).	SHEMEHIOD		
	Раздел 4. ХИМИЧЕСКАЯ КИНЕТИКА.			
	ХИМИЧЕСКОЕ РАВНОВЕСИЕ:	Практическое		
	- зависимость скорости химической реакции от	занятие:		
4	различных факторов;	Химическая	4	_
	- закон действующих масс;	кинетика и		
	- правило Ван-Гоффа, уравнение Аррениуса;	химическое		
	- смещение равновесия, принцип Ле-Шателье;	равновесие		
	- каталитические процессы.			
	Раздел 5. СПОСОБЫ ВЫРАЖЕНИЯ СОСТАВА	Практическое		
	PACTBOPOB:	занятие:		
_	- массовая доля и моляльность	Приготовление	_	
5	- массовая, молярная и нормальная (эквивалентная)	раствора серной	2	-
	концентрации.	кислоты с		
	- нормальная и молярная концентрация.	заданной		
		концентрацией		
	Раздел 6. Тема 1. РАСТВОРЫ ЭЛЕКТРОЛИТОВ.	Практическое		
	СМЕЩЕНИЕ РАВНОВЕСИЯ В РАСТВОРАХ	занятие:		
	ЭЛЕКТРОЛИТОВ.	Электролитичес		
6	- сильные электролиты, понятие об ионной силе	кая диссоциация	4	1
	растворов, активная концентрация;	и реакции		
	- слабые электролиты, гомогенные равновесия в	ионного обмена.		
	растворах, константа равновесия, диссоциация	Гидролиз		
	комплексных ионов;	неорганических		

		Форма	Трудоём	икость, час
№	Наименование раздела дисциплины (модуля)	проведения	очная	заочная
		занятия	форма	форма
	- гетерогенные равновесия в растворах,	солей		
	произведение растворимости;			
	- реакции ионного обмена, участие комплексных			
	соединений в обменных реакциях;			
	- водородный показатель.			
	Тема 2. ГИДРОЛИЗ:			
	- гидролиз неорганических солей;			
	- константа гидролиза, степень гидролиза, влияние			
	концентрации соли, температуры, примесей на			
	степень гидролиза;			
	- гидролиз кислых и основных солей; - совместный гидролиз.			
	- совместный гидролиз. Раздел 7. ОКИСЛИТЕЛЬНО-			
	ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ:			
	- важнейшие окислители и восстановители;	Практическое		
	- окислительно-восстановительные реакции с	занятие:		
7	заданной средой;	Окислительно-	4	1
	- направление и электродвижущая сила в	восстановительн	·	_
	окислительно-восстановительных реакциях;	ые реакции		
	- вывод среды в окислительно-восстановительных			
	реакциях.			
	Раздел 8. ЭЛЕКТРОХИМИЧЕСКИЕ ПРОЦЕССЫ			
	Тема 1. Гальванические элементы.	Проитиностью		
	разноэлектродный и концентрационный	Практическое занятие:		
	гальванические элементы.	Гальванические		
	Тема 2. Электролиз растворов неорганических	элементы.		
	солей.	Электролиз	_	
8	- электрохимические процессы, протекающие в	растворов	4	1
	растворах под действием тока от внешнего	неорганических		
	источника.	солей		
	Тема 3. Коррозия металлов и сплавов:	Коррозия		
	- виды и типы коррозии;	металлов		
	- коррозия металлов в различных средах;			
II.	- методы защиты от коррозии.		24	4
KII	UI U.		∠ 4	-

5.4 Детализация самостоятельной работы

№	Наименование раздела	Вид самостоятельной	Трудоемі	кость, час
140	дисциплины (модуля)	работы	очная	заочная
1	Раздел 1. Основные стехиометрические	Подготовка к	8	
1	законы.	практическому занятию	O	_
2	Раздел 2. Классы неорганических	Подготовка к	8	24
	веществ.	практическому занятию	O	24
3	Раздел 3. Строение атома и	Подготовка к	0	
3	периодическая система элементов.	практическому занятию	9	_
4	Раздел 4. Химическая кинетика.	Подготовка к	8	
4	Химическое равновесие.	практическому занятию	0	-
5	Раздел 5. Способы выражения состава	Подготовка к	8	
	растворов.	практическому занятию	O	-

No	Наименование раздела	Вид самостоятельной	Трудоемі	кость, час
JN≌	дисциплины (модуля)	работы	очная	заочная
6	Раздел 6. Тема 1. Растворы электролитов. Смещение равновесия в растворах электролитов. Тема 2. Гидролиз.	Подготовка к практическому занятию	10	25
7	Раздел 7. Окислительно- восстановительные реакции.	Подготовка к практическому занятию	9	25
8	Раздел 8. Электрохимические процессы. Тема 1. Гальванические элементы. Тема 2. Электролиз расплавов и растворов. Тема 3. Коррозия металлов и сплавов.	Подготовка к практическому занятию	10	24
9	Подготовка к промежуточной аттестации (зачету)	Изучение лекционного материала, литературных источников в соответствии с тематикой	4	4
Итог	70:		74	102

6. Перечень учебно-методического обеспечения по дисциплине Основная и дополнительная литература

<u>№</u> п/п	Автор, наименование	Год издания	Примечание			
	Основная учебная литература					
1	Ахметов, Н.С. Общая и неорганическая химия : учебник для вузов / Н.С. Ахметов. — 12-е изд., стер. — Санкт-Петербург : Лань, 2021. — 744 с. — Текст: электронный // Лань : электроннобиблиотечная система: [сайт]. — URL: https://e.lanbook.com/book/153910 — ISBN 978-5-8114-6983-3. — Текст: электронный.	2021	Полнотекст овый доступ при входе по логину и паролю*			
2	Ахметов, Н.С. Лабораторные и семинарские занятия по общей и неорганической химии: учебное пособие / Н.С. Ахметов, М.К. Азизова, Л.И. Бадыгина. — 6-е изд., стер. — Санкт-Петербург: Лань, 2021. — 368 с. — Текст: электронный // Лань: электронно-библиотечная система: [сайт]. — URL: https://e.lanbook.com/book/168686 — ISBN 978-5-8114-1716-2. — Текст: электронный.	2021	Полнотекст овый доступ при входе по логину и паролю*			
	Дополнительная учебная литература					
3	Пресс, И.А. Основы общей химии: учебное пособие / И. А. Пресс. — 2-е изд., перераб. — Санкт-Петербург: Лань, 2021. — 496 с. — ISBN 978-5-8114-1203-7. — Текст: электронный // Лань: электронно-библиотечная система: [сайт]. — URL: https://e.lanbook.com/book/168436 — Текст: электронный.	2021	Полнотекст овый доступ при входе по логину и паролю*			
4	Румянцев, Б.В. Окислительно-восстановительные свойства элементов и их соединений в растворах : учебно-справочное пособие / Б. В. Румянцев. — Санкт-Петербург : Лань, 2021. — 356 с.— Текст : электронный // Лань : электронно-библиотечная система: [сайт]. — ISBN 978-5-8114-2746-8. — URL: https://e.lanbook.com/book/167479 — Текст: электронный.	2021	Полнотекст овый доступ при входе по логину и паролю*			
5	Финогенко, Т.М. Химия. Классы неорганических соединений. Окислительно-восстановительные реакции: учебное пособие / Т.М. Финогенко, Д.А. Феофанов. — Красноярск: СибГУ им. академика М. Ф. Решетнёва, 2019. — 86 с. — Текст: электронный // Лань: электронно-библиотечная система: [сайт]. — URL: https://e.lanbook.com/book/147443 — Текст: электронный.	2019	Полнотекст овый доступ при входе по логину и паролю*			

^{*-} прежде чем пройти по ссылке, необходимо войти в систему

Функционирование электронной информационно-образовательной среды обеспечивается соответствующими средствами информационно-коммуникационных технологий.

Электронные библиотечные системы

Каждый обучающийся обеспечен доступом к электронной библиотечной системе УГЛТУ (http://lib.usfeu.ru/), ЭБС Издательства Лань http://e.lanbook.com/, ЭБС Университетская библиотека онлайн http://biblioclub.ru/, содержащих издания по основным изучаемым дисциплинам и сформированных по согласованию с правообладателями учебной и учебно-методической литературы.

Справочные и информационные системы

1. База данных Scopus компании Elsevier B.V. https://www.scopus.com/

Профессиональные базы данных

- 1. Научная электронная библиотека elibrary. Режим доступа: http://elibrary.ru/.
- 2. Единое окно доступа к образовательным ресурсам Федеральный портал (http://window.edu.ru/)
- 3. Библиотека Машиностроителя (https://lib-bkm.ru/)
- 4. Электронная Интернет библиотека для «технически умных» людей «ТехЛит.ру». Режим доступа: http://www.tehlit.ru/.
- 5. База данных «Открытая база ГОСТов» (https://standartgost.ru/)
- 6. Интернет-сайт Федерального агентства по техническому регулированию. Режим доступа: http://www.gost.ru/.
- 7. Интернет-сайт Издательского центра «Академия». Режим доступа: http:// <u>www.academia-moscow.ru/</u>.

7. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Формируемые компетенции	Вид и форма контроля
ОПК-1 - : способностью формулировать цели и	Промежуточный контроль: зачет в
задачи исследования, выявлять приоритеты	письменной форме.
решения задач, выбирать и создавать критерии	Текущий контроль: выполнение
оценки	практических заданий и защита отчетов по
	ним.
ОПК-4 – способностью использовать законы и	Промежуточный контроль: зачет в
методы математики, естественных, гуманитарных и	письменной форме
экономических наук при решении	Текущий контроль: выполнение
профессиональных задач	практических заданий и защита отчетов по
	ним.

7.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Критерии оценивания письменного ответа на вопросы зачетного билета (промежуточный контроль формирования компетенций ОПК-1, ОПК-4):

зачтено – дан полный, развернутый ответ на поставленный вопрос, показана совокупность осознанных знаний об объекте, доказательно раскрыты основные положения темы; в ответе прослеживается четкая структура, логическая последовательность, отражающая сущность раскрываемых понятий, теорий, явлений. Знание об объекте демонстрируется на фоне понимания его в системе данной науки и междисциплинарных связей. Ответ изложен литературным языком в терминах науки, показана способность быстро реагировать на уточняющие вопросы;

зачтено — дан полный, развернутый ответ на поставленный вопрос, показано умение выделить существенные и несущественные признаки, причинно-следственные связи. Ответ четко структурирован, логичен, изложен в терминах науки. Однако допущены незначительные ошибки или недочеты, исправленные бакалавром с помощью «наводящих» вопросов;

зачтено— дан неполный ответ, логика и последовательность изложения имеют существенные нарушения. Допущены грубые ошибки при определении сущности раскрываемых понятий, теорий, явлений, вследствие непонимания бакалавром их существенных и несущественных признаков и связей. В ответе отсутствуют выводы. Умение раскрыть конкретные проявления обобщенных знаний не показано. Речевое оформление требует поправок, коррекции;

не зачтено — студент демонстрирует незнание теоретических основ предмета, не умеет делать аргументированные выводы и приводить примеры, показывает слабое владение монологической речью, не владеет терминологией, проявляет отсутствие логичности и последовательности изложения, делает ошибки, которые не может исправить, даже при коррекции преподавателем, отказывается отвечать на занятии.

Критерии оценки выполнения и защиты отчетов по практическим занятиям (текущий контроль формирования компетенций ОПК-1, ОПК-4)

отпично: работа выполнена в срок; оформление и правильность написания химических реакций, расчетов и т.п. отчета образцовые, написаны грамотные выводы; отчет выполнен самостоятельно. Обучающийся правильно ответил на все вопросы при защите отчета.

хорошо: работа выполнена в срок; оформление и правильность написания химических реакций, расчетов и т.п. отчета образцовые; в задаче нет грубых ошибок в написании химических реакций, написаны грамотные выводы; отчет выполнен самостоятельно. Обучающийся при защите отчета правильно ответил на все вопросы с помощью преподавателя.

удовлетворительно: работа выполнена с нарушением графика; в оформлении, в расчетах, написании химических реакций есть ошибки, написаны выводы; отчет выполнен самостоятельно. Обучающийся при защите отчета ответил не на все вопросы.

неудовлетворительно: оформление отчета не соответствует требованиям; расчеты не выполнены и химические реакции написаны не верно, выводы не верные; отчет имеет грубые ошибки.

7.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Контрольные вопросы к зачету (промежуточный контроль)

- Раздел 1. Основные стехиометрические законы
- Раздел 2. Классы неорганических веществ
- Раздел 3. Строение атома и периодическая система элементов
- Раздел 4. Химическая кинетика. Химическое равновесие
- Раздел 5. Способы выражения состава растворов
- Раздел 6. Тема 1. Растворы электролитов. Смещение равновесия в растворах электролитов. Тема 2. Гидролиз.
 - Раздел 7. Окислительно-восстановительные реакции
 - Раздел 8. Электрохимические процессы. Тема 1. Гальванические элементы.
 - Тема 2. Электролиз расплавов и растворов.
 - Тема 3 Коррозия металлов и сплавов.

Фрагмент задания к практическим работам и защите отчетов по ним (текущий контроль) «Электролитическая диссоциация и ионные реакции»

Цель работы. Рассмотреть процессы протекающие при электролитической диссоциации и изучить механизмы протекания ионообменных реакций в растворах электролитов.

Задачи работы. Применяя правила написания ионообменных реакций протекающих в растворах электролитов, приобрести экспериментальные навыки их осуществления.

Ход работы. Используя разбавленные растворы химических соединений провести эксперименты иллюстрирующие различную силу электролитов и возможность самопроизвольного протекания ионообменных реакций.

Опыт 1. Электропроводность растворов

В стакан установки, используемой для качественного определения электропроводности электролитов налейте исследуемый раствор, опустите электроды, включите ток и проверьте, загорается ли лампочка. Таким же образом проверяется электропроводность водных растворов сахарозы, этилового спирта, серной кислоты, гидроксида натрия, хлорида натрия и водопроводной воды. Растворы должны быть одинаковой концентрации. Об электропроводности растворов судить по яркости свечения лампочки. Запишите уравнения диссоциации электролитов в табл. 1.

Реакции процессов электролитической диссоциации соединений

Вещество	Реакция диссоциации	Вывод
Н ₂ О _{водопров.}		
Н ₂ Одистиллиров.		
$C_6H_{12}O_6$		
C ₂ H ₅ OH		
NaCl		
NaOH		
$H_2 SO_4$		
СН ₃ СООН _(конц)		
CH ₃ COOH _(pa36)		
NH ₄ OH		

Опыт 2. Электропроводность раствора соли

В стакан установки, используемой для качественного определения электропроводности электролитов налейте разбавленный раствор гидроксида аммония и прилейте равный объем разбавленной уксусной кислоты. Включите установку. Как изменяется накал лампочки? Дайте необходимые объяснения, записав уравнения реакций в молекулярном и ионном виде.

Опыт 3. Ионные реакции с образованием осадка

В две пробирки внесите по 2-3 мл следующих растворов: в первую – хлорида железа (III) FeCl₃, во вторую – серной кислоты H_2SO_4 .

Затем в пробирки добавьте по такому же количеству растворов: в первую — гидроксида натрия (NaOH), во вторую — хлорида бария (BaCI₂). В обоих опытах наблюдайте образование трудно растворимых соединений. Каких? Составьте уравнения соответствующих реакций в молекулярном и ионном виде.

Опыт 4. Ионные реакции с образованием слабодиссоциирующих веществ

- 1. В пробирку, поместите 1-2 мл раствора ацетата натрия и прилейте раствор разбавленной серной кислоты. Составьте уравнения реакций в молекулярной и ионной формах.
- 2. В пробирку поместите 1-2 мл раствора хлорида аммония и добавьте раствор щелочи. Определите выделяющийся газ по запаху. Пробирку можно подогреть. Запишите уравнения реакций в молекулярной и ионной формах.
- 3. В две пробирки внесите по 1-2 мл 2н. раствора щелочи NaOH и добавляйте по одной капле раствора фенолфталеина. Под влиянием каких ионов раствор окрасился в малиновый цвет? В пробирки до обесцвечивания раствора по каплям добавляйте соответственно в одну 2н. раствор соляной кислоты, в другую раствор уксусной кислоты.

Чем объясняется исчезновение гидроксид-ионов при добавлении кислоты? В каком случае обесцвечивание раствора наступает быстрее? Напишите уравнения происходящих реакций в молекулярной и ионной формах.

Опыт 5. Ионные реакции с образованием летучих продуктов реакции

Поместите в пробирку 1-2 микрошпателя Na_2CO_3 и добавьте по каплям раствор уксусной кислоты. Напишите уравнение происходящей реакции в молекулярном и ионном виде.

Таблица 1

Опыт 6. Ионные реакции с образованием комплексных соединений

В пробирку внесите 1-2 мл раствора сульфата меди CuSO₄ и подействуйте на него небольшим количеством раствора щелочи NaOH. Отметьте цвет осадка и составьте уравнения реакции. Затем в пробирку по каплям добавляйте концентрированный раствор аммиака. Наблюдайте за растворением осадка и изменением окраски раствора вследствие образования комплексных ионов аммиаката меди. Составьте уравнения реакций в молекулярной и ионной формах.

7.4. Соответствие шкалы оценок и уровней сформированных компетенций

7.4. Соответствие шкалы оценок и уровней сформированных компетенций				
Уровень сформированных компетенций	Оценка	Пояснения		
Высокий	зачтено	Теоретическое содержание курса освоено полностью, все предусмотренные программой обучения учебные задания выполнены. Обучающийся демонстрирует способность на высоком уровне применять систему естественнонаучных фундаментальных знаний для идентификации, формулирования и решения профессиональных задач		
Базовый	зачтено	Теоретическое содержание курса освоено полностью, все предусмотренные программой обучения учебные задания выполнены с незначительными замечаниями. Обучающийся демонстрирует способность применять систему естественнонаучных фундаментальных знаний для идентификации и решения профессиональных задач.		
Пороговый	зачтено	Теоретическое содержание курса освоено частично, большинство предусмотренных программой обучения учебных заданий выполнено, в них имеются ошибки. Обучающийся может под руководством применять основные естественнонаучные законы химии в решении профессиональных задач.		
Низкий	не зачтено	Теоретическое содержание курса не освоено, большинство предусмотренных программой обучения учебных заданий либо не выполнены, либо содержат грубые ошибки; дополнительная самостоятельная работа над материалом не привела к какому-либо значительному повышению качества выполнения учебных заданий. Обучающийся не способен применять основные естественнонаучные законы химии в решении профессиональных задач.		

8. Методические указания для самостоятельной работы обучающихся

Самостоятельная работа способствует закреплению навыков работы с учебной и научной литературой, осмыслению и закреплению теоретического материала по химии.

Самостоятельная работа выполняется во внеаудиторное (аудиторное) время по заданию и при методическом руководстве преподавателя, но без его непосредственного участия (при частичном непосредственном участии преподавателя, оставляющем ведущую роль в контроле за работой студентов и магистрантов).

Формы самостоятельной работы студентов разнообразны. Они включают в себя:

— изучение учебной, научной и методической литературы, материалов периодических изданий с привлечением электронных средств официальной, статистической, периодической и научной информации;

- выполнение отчета при подготовке к практическим занятиям.

В процессе изучения дисциплины «Химия» студентами направления 23.03.02 «Наземные транспортно-технологические комплексы» (профиль — Автомобиле- и тракторостроение) основными видами самостоятельной работы являются:

- подготовка к аудиторным занятиям;
- выполнение отчета к практическим занятиям;
- подготовка к экзамену.

Подготовка к практическим занятиям.

Выполнение отчета к лабораторной работе является частью самостоятельной работы обучающегося и предусматривает индивидуальную работу студентов с учебной, технической и справочной литературой по соответствующим разделам курса.

Целью практических занятий является закрепление практических навыков, полученных на лекционных занятиях.

Студент в отчете к практическому занятию выполняет задание по варианту. Номер варианта соответствует порядковому номеру студента в списке группы.

Руководитель из числа преподавателей кафедры осуществляет текущее руководство, которое включает: систематические консультации с целью оказания организационной и научнометодической помощи студенту; контроль над выполнением работы в установленные сроки; проверку содержания и оформления отчета по практическому занятию.

Практическое занятие выполняется обучающимся самостоятельно и в виде отчета по выполненной практической работе представляется к проверке преподавателю до начала экзаменационной сессии. Отчет должен быть аккуратно оформлен в печатном или письменном виде, быть удобен для проверки и хранения.

Студенты, не выполнившие практические работы и не оформившие по ним отчеты, к сдаче зачета не допускаются.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Для успешного овладения дисциплиной используются следующие информационные технологии обучения:

- При проведении лекций используются презентации материала в программе Microsoft Office (PowerPoint), использование видеоматериалов различных интернет-ресурсов.
- Практические занятия по дисциплине проводятся с использованием необходимого методического материала (методические указания, справочники, таблицы и т.п.).
- в случае дистанционного изучения дисциплины и самостоятельной работы используется ЭИОС (MOODLE).

В процессе изучения дисциплины учебными целями являются первичное восприятие учебной информации о теоретических основах, ее усвоение, запоминание, а также структурирование полученных знаний и развитие интеллектуальных умений, ориентированных на способы деятельности репродуктивного характера. Посредством использования этих интеллектуальных умений достигаются узнавание ранее усвоенного материала в новых ситуациях, применение абстрактного знания в конкретных ситуациях.

Для достижения этих целей используются в основном традиционные информативноразвивающие технологии обучения с учетом различного сочетания пассивных форм (лекция и практическое занятие, консультация, самостоятельная работа) и репродуктивных методов обучения (повествовательное изложение учебной информации, объяснительно-иллюстративное изложение) и лабораторно-практических методов обучения (выполнение химического эксперимента).

Университет обеспечен необходимым комплектом лицензионного программного обеспечения:

• ЦОП "Химия. Виртуальная лаборатория. Задачи. Тренажеры. Тесты" (ВУЗы);

- семейство коммерческих операционных систем семейства Microsoft Windows;
- офисный пакет приложений Microsoft Office;
- программная система для обнаружения текстовых заимствований в учебных и научных работах «Антиплагиат. ВУЗ».

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Реализация учебного процесса осуществляется в специальных учебных аудиториях университета для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Все аудитории укомплектованы специализированной мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории. При необходимости обучающимся предлагаются наборы демонстрационного оборудования и учебно-наглядных пособий, обеспечивающие тематические иллюстрации.

Самостоятельная работа обучающихся выполняется в специализированной аудитории, которая оборудована учебной мебелью, компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду УГЛТУ.

Есть помещение для хранения и профилактического обслуживания учебного оборудования.

Требования к аудиториям

Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы
Помещение для лекционных и практических занятий, групповых и индивидуальных консультаций, текущей и промежуточной аттестации.	Столы, стулья, рабочее место, оснащенное компьютером с выходом в сеть Интернет и электронную информационную образовательную среду, а также: экран, проектор, маркерная доска, таблицей Д.И.Менделеева, таблицами с Рядом стандартных электродных потенциалов, растворимости солей и оснований в воде, степеней диссоциации слабых электролитов, констант устойчивости комплексных соединений и т.д., а также лабораторным столом, обеспечивающим проведение во время лекции демонстрационных опытов, стенд охраны труда и техники безопасности (ауд. 2-505, 2-524).
Помещение для лабораторных занятий и текущего контроля	Учебные лаборатории (Химическая лаборатория) оснащенная лабораторными столами и стульями, меловой доской, шкафом для хранения реактивов, металлическими стеллажами — 2 шт., комплектом учебно-наглядных материалов, химической посудой и реактивами, иономерами, лабораторными установками, вытяжными шкафами — 3 шт.
Помещения для самостоятельной работы	Столы, стулья, экран, проектор. Рабочие места студентов, оснащены компьютерами с выходом в сеть Интернет и электронную информационную образовательную среду.
Помещение для хранения и профилактического обслуживания	Расходные материалы для ремонта и обслуживания техники. Места для хранения

учебного оборудования	оборудования